风险提示:央行等十部委发布《关于进一步防范和处置虚拟货币交易炒作风险的通知》, 请读者提高风险意识。

万字解析Al+ Web3:新型生产关系赋能人工智能时代

本文介绍了人工智能和Web3的结合,认为人工智能是新型生产力,Web3将成为新时代的生产关系,避免AI垄断。作者是一名Web3投资者和AI研究者,介绍了人工智能的基础概念和新兴方向,以及AI在Web3上的应用。近十年,人工智能取得了突破性进展,主要得益于算力、数据和模型的发展。大语言模型是一种重要的人工智能模型,可以通过预训练和Fine tune训练来提升专业知识。Web3项目可分为基础设施、中间件和应用层,其中基础设施包括数据、算力和算法的去中心化。杀手级应用可能会成为顶级大项目,如ChatGPT在大模型领域的成功。

Frank-Zhang.eth
Frank-Zhang.eth
热度 ...

原文作者:Frank-Zhang.eth

原文来源:twitter

 注:本文来自@dvzhangtz 推特,火星财经整理如下:

笔者认为,人工智能本身代表新型生产力,是人类的发展方向;Web3与A的结合将使得Web3成为新时代的新型生产关系,成为组织未来人类社会,避免 AI 巨头形成绝对垄断的救赎之路。

作为一名长期奋战在 Web3 一级投资一线,以及曾经的 AI研究者,写一篇赛道 mapping,弟认为自己责无旁贷。

数据

一、本文目标

为了更充分地理解 A,我们需要了解:

1.A的一些基础概念如:什么是机器学习,为何需要大语言模型。

2.AI开发的步骡如:数据获取,模型预训练,模型fine tune,模型使用;都是在做什么。

3.一些新兴方向如:外置知识库,联邦学习,ZKML,FHEML,promptlearning,能力神经元。

4.整个 A链条上对应 Web3 都有哪些项目。

5.对于整个 AI链条 什么环节具有比较大的价值 或者说容易出大项目。

在描述这些概念的时候,笔者会尽量不使用公式、定义,而是用打比方的方式进行描述。

本文尽可能覆盖了较多的新名词,笔者希望在读者心里留下个印象,如果未来遇到,可以回来查其处于知识结构中的什么位置。


二、基础概念


Part 1


当今咱们熟悉的 web3+ai项目,他们的技术是属于人工智能 中的 机器学习 中的 神经网络这一思路。

下面的这段主要界定清楚一些基础概念:人工智能、机器学习、神经网络、训练、损失函数、梯度下降、强化学习、专家系统。


Part 2


人工智能

定义:人工智能是研究开发能够模拟、延申、扩展人类智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能的研究目的是促使智能机器,会:听,看,说,思考,学习,行动

我的定义:机器给的结果和人给的结果一样,真假难辨(图灵测试)


数据

Part 3


专家系统

如果一件事 有明确的步骤、需要用到的知识:专家系统


数据

Part 4


如果一件事 难以描述怎么做到:

1.有标注数据:机器学习,比如分析文本中的情感

例子:需要的训练数据

配钥匙师傅问我:”你配吗”neutral

隔壁很壮的小王问我:”你配吗“-negative

2.几乎无标注数据:强化学习,比如 下棋


数据

Part 5


神经网络是怎么教会机器一个知识的

机器学习现在涉及的知识和范围很广,我们这里仅仅讨论机器学习中最经典的套路,神经网络。

神经网络是怎么教会机器一个知识的呢?我们可以类比为我们:

如果想教会小狗如何在垫子上小便(经典案例,无不良指向)——(如果想教会机器一个知识)

方法1:如果狗狗在垫子小便则奖励块肉,如果不在则打屁股

方法2:如果狗狗在垫子小便则奖励块肉,如果不在则打屁股;而且距离垫子越远,打得越狠(计算损失函数)

方法3:狗狗每走一步,就进行一次判定:

如果是朝向垫子走,则奖励块肉,如果不是朝向垫子走,则打屁股

(每进行一次训练,计算一次损失函数)

方法4: 狗狗每走一步,就进行一次判定

如果是朝向垫子走,则奖励块肉,如果不是朝向垫

子走,则打屁股;

并且给狗狗在指向垫子的方向摆一块肉,吸引狗狗往垫子走

(每进行一次训练,计算一次损失函数,之后向着能最好降低损失函数的方向,进行梯度下降)


数据

Part 6


为什么最近十年神经网络突飞猛进?

因为最近十年人类在 算力、数据、算法上突飞猛进。

算力:神经网络其实上个世纪就被提出了,但是当时的硬件运行神经网络,耗时过长。但随着本世纪芯片技术的发展,计算机芯片运算能力以18个月翻一倍的速度发展。甚至还出现了 GPU这种擅长并行运算的芯片,这使得神经网络在运算时间上变得“可接受”。

数据:社交媒体,互联网上沉淀了大量训练数据大厂们也有相关的自动化需求。

模型:在有算力,有数据的情况下,研究者研究出了一系列更高效,更准确的模型。

“算力”、“数据”、“模型”也被成为 人工智能 三要素。


Part 7


大语言模型(LLM)为什么其很重要

为什么要关注:今天我们欢聚于此,是因为大家对Al+ web3 很好奇;而A 火是因为 ChatGPT;ChatGPT 就属于 大语言模型。

为什么需要大语言模型:我们上面说了,机器学是需要训练数据的,但是大规模数据标注成本太高;大语言模型以一种巧妙的方式解决了这个问题。


数据

Part8


Bert——第一个 大语言模型

我们没有训练数据怎么办?一句人话本身就是一段标注。我们可以使用完型填空法创造数据。

我们可以在一段话之中挖空,将一些词挖出来,让 transformer架构(不重要)的模型预测这些地方应该填写什么词(让狗狗找垫子);

如果模型预测错了,测一些损失函数,梯度下降(狗狗如果是朝向垫子走,则奖励块肉,如果不是朝向垫子走,则打屁股,并且给狗狗在指向垫子的方向摆一块肉,吸引狗狗往垫子走)

这样所有互联网上的文段,都能成为训练数据。这样的一个训练过程也就叫做“预训练”,所以大语言模型也称为预训练模型。这样的模型可以给他一句话,让他去一个词一个词的猜,下面应该说什么词。这个体验和我们现在使用 chatgpt 是一样的。

我对预训练的理解:预训练让机器从语料中学到了人类通用的知识,并培养了“语感”。


数据

Part 9


大语言模型的后续发展

在 Bert 提出之后,大家发现这玩意真好用!

只需要将模型变得更大,训练数据变得更多,效果就能越来越好。这不是无脑冲就好了。

训练数据暴涨:Bert 使用的是全部 wikipedia、书籍数据训练的,后来的训练数据扩展到全网的英文数据,后扩展到全网全语言

模型参数量飞速上涨


数据

三、AI开发的步骤


Part 1


预训练数据获取

(本步骤一般仅大厂/大研究所会做)预训练一般会需要巨量数据,需要对全网各类网页进行爬取,积累以 TB为单位的数据,然后进行预处理

模型预训练(本步骤一般仅大厂/大研究所会做)在完成数据收集之后,需要调集大量算力,数百张 A100/TPU 级别算力进行预训练


Part 2

关于【万字解析Al+ Web3:新型生产关系赋能人工智能时代】的延伸阅读

  • 重新理解Marlin:AI下半场的可验证计算L0「新基建」

    Marlin是一种可验证云计算服务,利用加密技术保证数据安全,为AI+Web3应用提供低延迟、低成本的解决方案。它基于TEE和ZKP技术,为用户提供通用化的云计算方案,并通过激励机制吸引节点为网络贡献资源。Marlin的愿景是成为AI世界的可验证通用L0,为Oracle预言机、ZK Prover系统、AI人工智能等应用场景提供节点算力和存储等网络资源服务。它可以为AI大模型训练提供安全的计算环境,并为多元化应用场景提供可验证计算中间件。在AI+Web3时代,Marlin有巨大的价值潜力,可能成为未来AI+Web3应用的关键基础设施。

  • Sam Altman 围绕 OpenAI 打造出一个致富帝国

    OpenAI首席执行官奥特曼同时经营副业,但只有一份工作让他发了财。他投资了多家想抓住人工智能风口的公司,包括网络安全软件公司和清洁能源公司。他最成功的投资是支付处理初创公司Stripe。奥特曼也投资了使用OpenAI技术的初创公司。他曾因投资引发利益冲突而被罢免职务,但重新担任首席执行官后制定了新的利益冲突政策。董事会正在进行改革,包括强化利益冲突政策和独立审计委员会。奥特曼计划通过全面披露和董事会管理来解决利益冲突问题。


模型二次预训练

(option)预训练让机器从语料中学到了人类通用的知识,并培养了“语感”,但如果我们想要让模型有某个领域的更多知识,可以拿这个领域的语料,灌入模型进行二次预训练。

比如美团,作为一个餐饮外卖平台,需要的大模型就应该了解更多的餐饮外卖知识。所以美团拿美团点评业务语料进行二次预训练,开发出MT-Bert.这样得到的模型在相关场景上效果更好。

我对二次预训练的理解:二次预训练让模型成为某个场景下的专家


Part 3


模型 fine tune 训练

(option)预训练模型如果想要成为某个任务上的专家,比如情感分类的专家,主题抽取的专家,说读理解的专家;可以使用该任务上的数据,对模型进行 fine tune。

但这里就需要标注数据,比如如果需要情感分类数据,就需要类似下面的数据:

配钥匙师傅问我:”你配吗”neutral

隔壁很壮的小王问我:”你配吗“negative

我对二次预训练的理解:Fine tune让模型成为某个任务下的专家

需要注意,模型的训练都需要显卡间大量传输数据。当前咱们 Al+ web3 有一大类项目是 分布式算力--世界各地的人将自己的闲置机器贡献出来做某些事情。但想用这种算力做完整的分布式预训练,是非常非常难的;想做做分布式 Fine tune 训练,也需要很巧妙的设计。因为显卡间传输信息的时间将高于计算的时间。


Part 4


需要注意,模型的训练都需要显卡间大量传输数据。当前咱们 Al+web3 有一大类项目是 分布式算力——世界各地的人将自己的闲置机器贡献出来做力某些事情。但想用这种算力做完整的分布式预训练,是非常非常难的;想做做分布式 Fine tune 训练,也需要很巧妙的设计。因为显卡间传输信息的时间将高于计算的时间。


Part 5


模型使用

模型使用,也称为 模型推理(inference)。这指的是模型在完成训练之后进行一次使用的过程。

相比训练,模型推理并不需要显卡大量传输数据,所以 分布式 推理 是个相对容易的事情。


四、大模型的最新应用


Part 1


外置知识库

出现原因:我们希望模型知道一些少量我们领域的知识,但又不希望花大成本再训练模型

方法:将大量 pdf 数据打包到 向量数据库 之中,将其作为背景信息作为输入

案例:百度云一朵、Myshell

Promptlearning

出现原因:我们感觉外置知识库还无法满足 我们对模型的定制化需求,但又不想负担整个模型的调参训练

方法:不对模型进行训练,仅使用训练数据,去学应该写一个什么样的 Prompt

案例:广泛应用于当今


Part 2


联邦学习(Federated Learning,FL)

出现原因:在训练模型的使用,我们需要提供自己的数据,这会泄露我们隐私,这对于一些金融、医疗机构是不可接受的

方法:每一家机构都在本地使用数据训练模型,然后将模型集中到一个地方进行模型融合

案例:Flock

FHEML

出现原因:联邦学习需要每个参与方本地都训练个模型,但这对每个参与方门槛太高了

方法:使用 FHE的手段进行全同态加密,是的模型可以用加密后的数据直接训练

缺点:极慢,极贵

案例:ZAMA,Privasea


Part 3


ZKML

出现原因:我们在使用别人提供的模型服务的时候,希望确认其真的在按我们的要求,提供模型服务,而不是使用一个小模型再瞎搞

方法:让其用ZK的手段生成个证明,证明其确实在做他号称他做了的运算

缺点:很慢,很贵

案例:Modulus

能力神经元(skillneuron)

出现原因:当今模型就像是一个黑箱,我们喂了他很多训练数据,但他到底学到了什么我们不知道;我们希望能有某种方式,让模型在某个特定方向优化,比如具有更强的情感感知能力,具有更高的道德水平

方法:模型就像大脑,有些区域的神经元管理情感,有些区域管理道德,找出这些节点,我们就可以针对性的优化

案例:未来方向


五、A链条上对应 Web3 项目分类方式


Part 1


笔者会分为三大类:

Infra:去中心化A的基础设施

中间件:让Infra 可以更好服务应用层

应用层:一些直接面向 C端/B端的应用


Part 2


Infra 层:AI的基础设施永远是三大类:数据算力算法(模型)

去中心化算法(模型):

@TheBittensorHub 研报:x.com/dvzhangtz/stat..@flock_ io

去中心化算力:

通用算力: @akashnet_, @ionet

专用算力:@rendernetwork(渲染)、@gensynai(AI),@heuris_ai(Al)@exa_bits (A)(AD,

去中心化数据:

数据标注:@PublciAl_,QuestLab

存储:IPFS,FIL

Oracle: Chainlink

索引:The Graph


Part 3


中间件:如何让Infra 可以更好服务应用层

隐私: @zama fhe, @Privasea_ai

验证: EZKL, @ModulusLabs , @gizatechxyz

应用层:应用其实其实很难全部分类,只能列举其中最具代表性的几项

数据分析

@_kaitoai,@DuneAnalytics ,Adot

Agent

Market: @myshell_ai

Web3知识聊天机器人:@qnaweb3

帮人做操作:@autonolas


六、什么样的地方更容易出大项目?


首先,与其他领域类似,Infra 容易出大项目,尤其是去中心化模型、去中心化算力,笔者感觉其边际成本较低。

然后,在与 @owenliang60 哥的启发下,笔者感到应用层 如果能出现一个杀手级应用,其也会成为顶级大项目。

回顾大模型的历史,是 ChatGPT这个杀手级应用将其推向封口浪尖,其不是什么技术上的大迭代,而是针对 Chat 这个任务的优化。也许在A+Web3 领域未来也会出现像 Stepn/Friendtech 这样的现象级应用,我们拭目以待

免责声明:本文仅代表作者个人观点,不代表链观CHAINLOOK立场,不承担法律责任。文章及观点也不构成投资意见。请用户理性看待市场风险,以及遵守所在国家和地区的相关法律法规。
图文来源:Frank-Zhang.eth,如有侵权请联系删除。转载或引用请注明文章出处!

标签:

分享至
https://www.chainlook.cn/toutiao/1714546203.html

下一篇:

BOB已在主网集成Particle Network旗下BTC Connect

链观CHAINLOOK消息, BTC L2 BOB 在 X 平台发文表示,已经在主网全面集成 Modular […]

免责声明:
链观CHAINLOOK作为区块链技术应用与Web3行业研究的智库媒体,旨在为中国区块链专家、学者们提供最新的行业资讯信息与数据样本,用于区块链技术研究与创新。本站所发布的文章仅代表作者的个人观点,不代表链观CHAINLOOK官方立场,本站所发布的区块链行业研究报告与数据分析成果是通过人工智能算法对数据内容进行分析与归纳生成,不代表任何投资暗示与建议,链观CHAINLOOK不承担法律责任。

风险提示:
虚拟货币不具有法定货币等同的法律地位,参与虚拟货币投资交易存在法律风险,链观CHAINLOOK坚决反对各类代币炒作,请读者提高风险意识,理性看待区块链技术应用及市场风险。

© 链观CHAINLOOK All Rights Reserved. 京ICP备18054193号-5