风险提示:央行等十部委发布《关于进一步防范和处置虚拟货币交易炒作风险的通知》, 请读者提高风险意识。

亮相英伟达大会,NEAR缘何莫名成了AI头部公链?

NEAR公链创始人Illia Polosukhin有着长期的AI背景,是Transformer架构的共同构建者。NEAR推出了NEAR Tasks和AI Agent服务,为人工智能模型训练和链上操作提供服务。NEAR还具备强大的DA能力,可以追踪AI模型训练数据的有效性和真实性。NEAR在AI方向的技术延展和叙事引导,比纯链抽象更具吸引力。长期关注NEAR在链抽象上的布局和产品推进,AI有望成为牛市催化剂。

郝天
郝天
热度 ...

原文作者:郝天

原文来源:链上观

最近,NEAR founder @ilblackdragon 将亮相英伟达AI大会的消息,让NEAR公链赚足了眼球,市场价格走势也喜人。不少朋友疑惑,NEAR链不是All in在做链抽象么,怎么莫名其妙就成了AI头部公链了?接下来,分享下我的观察,顺带科普下一些AI模型训练知识:

1)NEAR创始人Illia Polosukhin有过较长时间的AI背景,是Transformer架构的共同构建者。而Transformer架构是如今LLMs大型语言模型训练ChatGPT的基础架构,足以证明NEAR老板在成立NEAR前确实有AI大模型系统的创建和领导经验。

2)NRAR 曾在NEARCON 2023上推出过NEAR Tasks,目标是为了进行人工智能模型的的训练和改进,简单来说,模型训练需求方(Vendor)可以在平台发布任务请求,并上传基础数据素材,用户(Tasker)可以参与进行任务答题,为数据进行文本标注和图像识别等人工操作。任务完成后,平台会给用户NEAR代币奖励,而这些经过人工标注的数据会被用于训练相应的AI模型。

比如:AI模型需要提高识别图片中物体的能力,Vendor可以将大量图片中带有不同物体的原始图片上传到Tasks平台,然后用户手动标注图片上上物体位置,就可以生成大量“图片-物体位置”的数据,AI就可以用这些数据来自主学习来提高图片识别能力。

乍一听,NEAR Tasks不就是想社会化人工工程来为AI模型做基础服务嘛,真有那么重要?在此加一点关于AI模型的科普知识。

通常情况下,一次完整的AI模型训练,包括数据采集、数据预处理和标注、模型设计与训练、模型调优、微调、模型验证测试、模型部署、模型监控与更新等等过程,其中数据标注和预处理为人工部分,而模型训练与优化为机器部分。

显然,大部分人理解中的机器部分要明显大于人工部分,毕竟显得更高科技一些,但实际情况下,人工标注在整个模型训练中至关重要。

人工标注可以为图像中的对象(人、地点、事物)等添加标签,供计算机提升视觉模型学习;人工标注还能将语音中的内容转化为文本,并标注特定音节、单词短语等帮助计算机进行语音识别模型训练;人工标注还可以给文本添加一些快乐、悲伤、愤怒等情感标签,让人工智能增强情感分析技能等等。

关于【亮相英伟达大会,NEAR缘何莫名成了AI头部公链?】的延伸阅读

  • 重新理解Marlin:AI下半场的可验证计算L0「新基建」

    Marlin是一种可验证云计算服务,利用加密技术保证数据安全,为AI+Web3应用提供低延迟、低成本的解决方案。它基于TEE和ZKP技术,为用户提供通用化的云计算方案,并通过激励机制吸引节点为网络贡献资源。Marlin的愿景是成为AI世界的可验证通用L0,为Oracle预言机、ZK Prover系统、AI人工智能等应用场景提供节点算力和存储等网络资源服务。它可以为AI大模型训练提供安全的计算环境,并为多元化应用场景提供可验证计算中间件。在AI+Web3时代,Marlin有巨大的价值潜力,可能成为未来AI+Web3应用的关键基础设施。

  • Sam Altman 围绕 OpenAI 打造出一个致富帝国

    OpenAI首席执行官奥特曼同时经营副业,但只有一份工作让他发了财。他投资了多家想抓住人工智能风口的公司,包括网络安全软件公司和清洁能源公司。他最成功的投资是支付处理初创公司Stripe。奥特曼也投资了使用OpenAI技术的初创公司。他曾因投资引发利益冲突而被罢免职务,但重新担任首席执行官后制定了新的利益冲突政策。董事会正在进行改革,包括强化利益冲突政策和独立审计委员会。奥特曼计划通过全面披露和董事会管理来解决利益冲突问题。

不难看出,人工标注是机器开展深度学习模型的基础,没有高质量的标注数据,模型就无法高效学习,如果标注数据量不够大,模型性能也会受到限制。

目前,AI微创领域有很多基于ChatGPT大模型进行二次微调或专项训练的垂直方向,本质上都是在OpenAI的数据基础上,额外增加新的数据源尤其是人工标注数据来施展模型训练。

比如,医疗公司想基于医学影像AI做模型训练,为医院提供一套在线AI问诊服务,只需要将大量的原始医学影像数据上传到Task平台,然后让用户去标注并完成任务,就产生了人工标注数据,再将这些数据对ChatGPT大模型进行微调和优化,就会让这个通用AI工具变成垂直领域的专家。

不过,NEAR仅仅凭借Tasks平台,就想成为AI 公链龙头显然还不够,NEAR其实还在生态系统中进行AI Agent服务,用来自动执行用户一切链上行为和操作,用户只需授权就可以自由在市场中买卖资产。这有点类似Intent-centric,用AI自动化执行来提升用户链上交互体验。除此之外,NEAR强大的DA能力可以让它在AI数据来源的可追溯性上发挥作用,追踪AI模型训练数据有效性和真实性。

总之,背靠高性能的链功能,NEAR做AI方向的技术延展和叙事引导,似乎要比纯链抽象要不明觉厉多了。

半个月前我在分析NRAR链抽象时,就看到了NEAR链性能+团队超强web2资源整合能力的优势,万万没想到,链抽象还没有普及开来摘到果子,这一波AI赋能再一次把想象力放大了。

Note:长期关注还是得看NEAR在“链抽象”上的布局和产品推进,AI会是个不错的加分项和牛市催化剂!#NEAR

免责声明:本文仅代表作者个人观点,不代表链观CHAINLOOK立场,不承担法律责任。文章及观点也不构成投资意见。请用户理性看待市场风险,以及遵守所在国家和地区的相关法律法规。
图文来源:郝天,如有侵权请联系删除。转载或引用请注明文章出处!

标签:

分享至
https://www.chainlook.cn/toutiao/1710305409.html

下一篇:

2024 年模块化观察清单——您应该了解的 35 个模块化协议

模块化货币是一种流行的趋势,可以帮助解决区块链的扩展问题。它利用不同的技术来实现数据可用性、共识和结算,提高加密货币的效率和可扩展性。一些平台提供共享安全层和汇总服务,让用户可以无需许可地质押比特币并获得收益。还有许多其他知名的协议在构建自己的模块化堆栈,如以太坊、Arbitrum、Optimism等。这些平台不断发展,为用户提供更多选择。

免责声明:
链观CHAINLOOK作为区块链技术应用与Web3行业研究的智库媒体,旨在为中国区块链专家、学者们提供最新的行业资讯信息与数据样本,用于区块链技术研究与创新。本站所发布的文章仅代表作者的个人观点,不代表链观CHAINLOOK官方立场,本站所发布的区块链行业研究报告与数据分析成果是通过人工智能算法对数据内容进行分析与归纳生成,不代表任何投资暗示与建议,链观CHAINLOOK不承担法律责任。

风险提示:
虚拟货币不具有法定货币等同的法律地位,参与虚拟货币投资交易存在法律风险,链观CHAINLOOK坚决反对各类代币炒作,请读者提高风险意识,理性看待区块链技术应用及市场风险。

© 链观CHAINLOOK All Rights Reserved. 京ICP备18054193号-5