风险提示:央行等十部委发布《关于进一步防范和处置虚拟货币交易炒作风险的通知》, 请读者提高风险意识。

前以太坊基金会 zkML 研究员简评 Vitalik 新作 Crypto+AI

Vitalik Buterin探讨了区块链和人工智能的交叉点,提出了四个交叉点,并强调了密码学开销和对抗性机器学习攻击的挑战。他认为人工智能与加密货币有巨大潜力,但仍需解决挑战。opML是一个解决这些问题的系统,结合了zkML和加密技术,保护用户隐私。它已成功应用于以太坊上的Stable Diffusion和LLaMA 2,并可以实现多种人工智能用例。opML让AI和加密领域的结合变得更可行。

Cathie
Cathie
热度 ...

原文标题:Solving challenge of crypto + AI applications

前期提要

Vitalik Buterin 的最新文章探讨了区块链和人工智能 (AI) 之间的交叉点,主要关注于如何将 AI 应用于加密世界,并探讨了四个交叉点: AI 作为参与者、AI 作为界面、AI 作为规则、以及 AI 作为目标。

文章讨论了在这些交叉点上的前景和挑战,强调了对抗性机器学习攻击和密码学开销的问题。 文章提到了使用零知识证明等密码学形式隐藏模型内部运作的可能性,同时指出了密码学开销和黑匣子对抗性机器学习攻击的挑战。

最后,文章讨论了创建可扩展的去中心化隐私 AI 的技术,并考虑了在 AI 安全和 AI 作为游戏目标方面的应用。 文章总结时强调了在这些领域中需要谨慎实践,但对于区块链和 AI 的交叉领域的前景表示期待。

0. 「Crypto + AI 应用前景和挑战」

在 Vitalik 的最新文章中,他讨论了人工智能与密码学的交叉,并提出了两个主要的挑战: 密码学开销和黑盒对抗性机器学习攻击。

隐私

Vitalik 认为人工智能与加密货币方向大有可为。 在帮助加密货币变得更好的过程中,人工智能可以发挥关键作用,如作为「游戏界面」或「游戏规则」。

1. 挑战: 密码学开销

a) 密码学开销问题已经被解决?

虽然 Vitalik 认为 AI x Crypto 大有可为,但他指出,主要的反对意见之一是密码学开销。 目前最主流的链上 AI/ML 方法是 zkML,它将 ML 模型编译成 zk 电路,这样就可以在链上验证密码学证明。

「人工智能计算本来就很昂贵」,再加上密码学,速度就更慢了。

Vitalik 认为,密码学开销的问题已经得到了部分解决:

  • 人工智能计算及其密码学开销适合高度加速,而且不像 zkEVM 那样存在「非结构化」计算类型。
  • 随着时间的推移,更高效的 zk 密码学方案将会被发明出来,开销也会大大减少。

b) 目前,额外开销是 1000 倍。

然而,这种方法远远不够实用,尤其是对于 Vitalik 所描述的使用案例。 下面是一些相关的例子:

  • zkML 框架 EZKL 生成一个 1M-nanoGPT 模型的证明大约需要 80 分钟。
  • 根据 Modulus Labs 的说法,zkML 比纯计算的开销 >>1000 倍,最新报告的数字是 1000 倍。
  • 根据 EZKL 的测试,RISC Zero 的随机森林分类平均证明时间为 173 秒。

在实践中,要等待几分钟才能得到 AI 所生成的交易的易读解释是不可接受的。

隐私

2. 通过 opML 解决

a) opML: Optimistic 机器学习

在文章的最后,Vitalik 提到:「我期待在所有这些领域看到更多人工智能建设性用例的尝试,这样我们就能看到其中哪些是真正可行的规模化应用。」我们认为,zkML 在现阶段并不「可行」,无法实现上述应用。

关于【前以太坊基金会 zkML 研究员简评 Vitalik 新作 Crypto+AI】的延伸阅读

  • 重新理解Marlin:AI下半场的可验证计算L0「新基建」

    Marlin是一种可验证云计算服务,利用加密技术保证数据安全,为AI+Web3应用提供低延迟、低成本的解决方案。它基于TEE和ZKP技术,为用户提供通用化的云计算方案,并通过激励机制吸引节点为网络贡献资源。Marlin的愿景是成为AI世界的可验证通用L0,为Oracle预言机、ZK Prover系统、AI人工智能等应用场景提供节点算力和存储等网络资源服务。它可以为AI大模型训练提供安全的计算环境,并为多元化应用场景提供可验证计算中间件。在AI+Web3时代,Marlin有巨大的价值潜力,可能成为未来AI+Web3应用的关键基础设施。

  • Sam Altman 围绕 OpenAI 打造出一个致富帝国

    OpenAI首席执行官奥特曼同时经营副业,但只有一份工作让他发了财。他投资了多家想抓住人工智能风口的公司,包括网络安全软件公司和清洁能源公司。他最成功的投资是支付处理初创公司Stripe。奥特曼也投资了使用OpenAI技术的初创公司。他曾因投资引发利益冲突而被罢免职务,但重新担任首席执行官后制定了新的利益冲突政策。董事会正在进行改革,包括强化利益冲突政策和独立审计委员会。奥特曼计划通过全面披露和董事会管理来解决利益冲突问题。

作为 opML 的发明者和 opML 的首个开源实现的创建者,我们相信,opML 可以通过博弈论解决密码学开销问题,让人工智能 x Crypto 现在就能实现。

隐私

b) 通过激励措施实现安全性

opML 在保证安全性的同时,解决了链上 ML 的密码学开销问题。 为了简单起见,我们可以使用 Arbitrum 的 AnyTrust 假设来评估 opML 系统的安全性。

AnyTrust 假设每个主张至少有一个诚实节点,确保提交者或至少一个验证者是诚实的。 在 AnyTrust 下,安全性和有效性得以保持:

  • 安全性: 一个诚实的验证者可以通过质疑恶意节点的错误结果来强制执行正确的行为,从而通过仲裁程序进行惩罚。
  • 有效性: 提议的结果要么在最长期限内被接受,要么被拒绝。

比较「AnyTrust」和「Majority Trust」,opML 的「AnyTrust」 模型更安全。「AnyTrust」 保持了很高的安全性,在各种条件下都优于「Majority Trust」。

c) 用户隐私 > 模型隐私

Vitalik 在文章中还谈到了模型隐私问题。 事实上,对于大多数模型 ( 尤其是 zkML 目前在实践中支持的小型模型 ),都可以通过足够的推理来重建模型。

对于一般隐私,尤其是用户隐私,由于需要保持挑战的公开性,opML 似乎缺乏固有的隐私功能。 通过结合 zkML 和 opML,我们可以获得恰到好处的隐私级别,确保安全和不可逆转的混淆。

d) 实现 AI x Crypto 用例

opML 已经可以直接在以太坊上运行 Stable Diffusion 和 LLaMA 2。 Vitalik 提到的四个类别 ( 人工智能作为玩家 / 界面 / 规则 / 目标 ) 已经可以通过 opML 实现,而且没有任何额外开销。

隐私

我们正在积极探索以下用例和方向:

  • AIGC NFT (ERC-7007),7007 Studio 在 Story Protocol Hackathon 中获胜
  • 链上人工智能游戏 ( 如龙与地下城游戏 )
  • 使用 ML 的预测市场
  • 内容真实性 (Deepfake 验证器 )
  • 合规的可编程隐私
  • Prompt 市场
  • 信誉 / 信用评分

3. 总结

有了 opML,我们就能消除密码学开销带来的挑战,保留去中心化和可验证性,让 AI x Crypto 现在就变得可行。

免责声明:本文仅代表作者个人观点,不代表链观CHAINLOOK立场,不承担法律责任。文章及观点也不构成投资意见。请用户理性看待市场风险,以及遵守所在国家和地区的相关法律法规。
图文来源:Cathie,如有侵权请联系删除。转载或引用请注明文章出处!

标签:

分享至
https://www.chainlook.cn/toutiao/1706755813.html

下一篇:

解读 Layer1 区块链迁移到 Layer2 Rollups 背后的原因?

L1区块链是构建企业定制区块链网络的最佳选择。随着Rollup方案的兴起,许多L1区块链正在转向L2 Rollup方案,以解决高成本、验证者集合和兼容性等挑战。L2 Rollup方案具有低成本基础设施、完全兼容以太坊、可靠安全性和适用于特定用例的优势。CDK、Zk Stack、Arbitrum和OP Stack是100%兼容以太坊的滚动方案,可以无缝使用现有的智能合约和开发工具。L2 Rollup方案继承了L1链的安全性,同时也可以定制为特定用例。已有多个项目成功迁移到L2 Rollup方案,包括Canto、Celo、Astar Network和Lisk。

免责声明:
链观CHAINLOOK作为区块链技术应用与Web3行业研究的智库媒体,旨在为中国区块链专家、学者们提供最新的行业资讯信息与数据样本,用于区块链技术研究与创新。本站所发布的文章仅代表作者的个人观点,不代表链观CHAINLOOK官方立场,本站所发布的区块链行业研究报告与数据分析成果是通过人工智能算法对数据内容进行分析与归纳生成,不代表任何投资暗示与建议,链观CHAINLOOK不承担法律责任。

风险提示:
虚拟货币不具有法定货币等同的法律地位,参与虚拟货币投资交易存在法律风险,链观CHAINLOOK坚决反对各类代币炒作,请读者提高风险意识,理性看待区块链技术应用及市场风险。

© 链观CHAINLOOK All Rights Reserved. 京ICP备18054193号-5