风险提示:央行等十部委发布《关于进一步防范和处置虚拟货币交易炒作风险的通知》, 请读者提高风险意识。

IOBC Capital:AI + Crypto会碰出什么火花?

AI和Crypto的融合可能会为数字化带来智能变革。

0xCousin
0xCousin
热度 ...

原文作者:0xCousin

原文来源:IOBC Capital

导言:随着数字技术的飞速发展,AI和Crypto已经成为最热门的两个话题。AI作为一项技术革命,代表了最先进的生产力;Crypto基于区块链技术,代表着最公平的生产关系。AI和Crypto正在不断地改变我们的生活和工作方式。本文将探讨AI和Crypto的融合,以及它们如何共同塑造我们的未来。

AI:最先进的生产力

AI(Artificial Intelligence,人工智能)是一项涉及使计算机系统能够模仿人类智能和执行智能任务的技术。它涵盖了多个子领域,包括:

1、机器学习:机器学习是AI的基础,涉及训练计算机系统通过数据和经验改进性能。包括监督学习、无监督学习和强化学习等不同类型;

2、深度学习:深度学习是机器学习的一个分支,模拟人脑神经网络的工作方式。它利用多层神经网络处理复杂数据,并在计算机视觉、自然语言处理等领域取得了重大突破;

3、自然语言处理(NLP):NLP涉及使计算机能够理解和处理人类语言。它包括文本分析、情感分析、语音识别、机器翻译等技术。

4、计算机视觉:计算机视觉旨在使计算机系统能够“看”和理解图像和视频。它涉及图像识别、目标检测、人脸识别、图像生成等方面的技术。

从底层逻辑来看,AI的核心是要使计算机具有“感知能力”、“认知能力”、“创造力”和“智能”。具象地解释就是——要让计算机能够像人一样思考、像人一样行动、理性地思考、理性地决策。

随着AI技术的发展,有很多应用场景可以通过使用AI,实现降本、提效、安全。总之,可以更好的服务人类。比如:

  • 自动驾驶:AI技术被用于开发自动驾驶汽车,通过感知环境、做出决策和控制车辆,提高道路安全性和驾驶效率。
  • 医疗保健:AI在医学图像识别、疾病诊断和治疗计划方面发挥重要作用,帮助医生提供更准确的诊断和个性化的治疗方案。
  • 金融服务:AI被广泛应用于金融领域,包括风险评估、信用评分、投资策略和反欺诈等方面,提高金融机构的效率和准确性。
  • 智能家居:AI被应用于智能家居设备,使得家居设备能够通过语音或手势控制,提高家居的便利性和舒适度。
  • 自然语言处理:AI技术使得机器能够理解和处理人类语言,包括语音识别、语义理解和自动翻译等,广泛应用于智能助理(如Siri、Alexa、Google Assistant)和虚拟机器人(如机器人客服)通过语音和文字交互提供个性化的服务和支持。
  • 娱乐与游戏:AI在游戏开发中发挥重要作用,包括智能敌人的设计、游戏难度的自适应和逼真的图形效果等。

今年最火的ChatGPT是一个基于Generative Pre-trained Transformer的聊天机器人模型。GPT是由OpenAI开发的一种基于Transformer架构的语言模型。ChatGPT 的目标是通过对大量文本数据进行预训练,学习语言的统计规律和语义理解,以生成人类类似的自然语言响应。

GPT 的底层设计逻辑主要包括两个关键组件:Transformer 架构和预训练-微调的方法。

Transformer 架构:Transformer 是一种基于自注意力机制(self-attention)的神经网络架构,它在处理序列数据时能够建立长距离的依赖关系。Transformer 由多个编码器-解码器层(encoder-decoder layers)组成,每个层都由多头注意力机制和前馈神经网络组成。注意力机制允许模型在生成输出时聚焦于输入序列中的不同位置,从而更好地理解上下文信息。

预训练-微调方法:ChatGPT 使用了大规模的无监督预训练来学习语言的模式和知识。预训练阶段,模型通过对海量文本数据进行自监督学习,尝试预测输入序列中缺失的部分。这使得模型能够学习到语法、语义和常识等知识。然后,在微调阶段,使用特定任务的有标签数据对模型进行有监督的微调,以使其适应特定的任务,例如聊天机器人。

ChatGPT的生成过程包括两个阶段:编码器输入阶段和解码器生成阶段。在编码器输入阶段,模型接收用户输入并将其转化为隐藏表示,以捕捉输入的语义信息。在解码器生成阶段,模型利用编码器的隐藏表示和之前生成的标记来生成下一个响应标记,直到达到特定的停止条件。

Crypto:区块链是最公平的生产关系

这个无需赘述,根本上讲Crypto能发展到现在的规模,核心就在于区块链能够增强社会公平性,代表着最公平的生产关系。当然,首先公平是需要放在某个相对普适的价值观框架来讨论才有意义。

以目前最大市值的Bitcoin和Ethereum为例。在“劳有所得、多劳多得”的价值观框架中,Bitcoin的PoW共识机制就非常公平;同样的,在“资本利得”的价值观框架中,Ethereum从PoW转变为PoS之后,仍然非常公平。

总之,基于区块链技术的Crypto,能够优化资源配置、能够实现社区自治,代表着最公平的社会生产关系。

AI与Crypto的融合

关于【IOBC Capital:AI + Crypto会碰出什么火花?】的延伸阅读

  • 重新理解Marlin:AI下半场的可验证计算L0「新基建」

    Marlin是一种可验证云计算服务,利用加密技术保证数据安全,为AI+Web3应用提供低延迟、低成本的解决方案。它基于TEE和ZKP技术,为用户提供通用化的云计算方案,并通过激励机制吸引节点为网络贡献资源。Marlin的愿景是成为AI世界的可验证通用L0,为Oracle预言机、ZK Prover系统、AI人工智能等应用场景提供节点算力和存储等网络资源服务。它可以为AI大模型训练提供安全的计算环境,并为多元化应用场景提供可验证计算中间件。在AI+Web3时代,Marlin有巨大的价值潜力,可能成为未来AI+Web3应用的关键基础设施。

  • Sam Altman 围绕 OpenAI 打造出一个致富帝国

    OpenAI首席执行官奥特曼同时经营副业,但只有一份工作让他发了财。他投资了多家想抓住人工智能风口的公司,包括网络安全软件公司和清洁能源公司。他最成功的投资是支付处理初创公司Stripe。奥特曼也投资了使用OpenAI技术的初创公司。他曾因投资引发利益冲突而被罢免职务,但重新担任首席执行官后制定了新的利益冲突政策。董事会正在进行改革,包括强化利益冲突政策和独立审计委员会。奥特曼计划通过全面披露和董事会管理来解决利益冲突问题。

AI与Crypto的融合,可能会出现一些很有趣的应用探索。

1、Crypto AITradingBot

因为AI在数据分析和处理、模型训练等方面已经发展得比较成熟,已经有AI做投资的先例:

文艺复兴对冲基金(Renaissance Technologies)就是通过100%依靠大规模数据分析和数学模型的机器学习,利用高频交易、统计套利和市场中性策略进行投资,在存续期间赚了1000亿美元。文艺复兴对冲基金可以视为一种运用机器学习和数据分析的金融版AI。

而Crypto市场在支持AI介入投资方面有得天独厚的优势:24小时无缝运作、匿名、无KYC、链上完全闭环、无实体接触。如果研发一个针对Crypto市场的AI Trader,完全可以在Crypto市场运行链上套利、量化、趋势分析这些对冲策略;再设计一些机器学习和数据分析的模型,让这个AI Trader不断提高对Crypto市场的认知,也许也能创造出一个能够持续盈利的AI Trader。

使用AI预测Crypto市场趋势:加密货币市场的价格波动十分剧烈,而AI可以通过分析大量的市场数据和历史价格走势,预测市场的趋势和价格波动。机器学习算法能够识别出隐藏的模式和趋势,帮助投资者做出更明智的决策。例如,AI可以通过深度学习模型对市场情绪进行分析,从而预测加密货币价格的上升或下降趋势。

使用AI进行自动化交易:AI的自动化交易算法是加密货币交易的重要工具之一。通过编写智能合约和交易机器人,可以实现自动化的加密货币交易。这些机器人可以根据预设的规则和策略执行交易,减少人为因素的干扰,并提高交易效率和准确性。例如,利用AI算法,交易机器人可以根据市场条件自动执行买入或卖出操作,以获得最佳交易结果。

在这个方向,我们目前看到的是Rockybot。这是一个fully onchain AI Trading bot,它可以实现用链上AI模型来预测ETH价格,并且无需中央授权即可自行做出投资决策。Rockybot依靠StarkNet,接受过WETH:USDC交易对的历史价格/汇率数据的培训。在架构上,Rocky是一个简单的三层前馈神经网络,它根据历史市场价格数据预测WETH的价格会上涨还是下跌。不过Rockybot还没开始赚钱……它可能还需要更多的训练(不过项目方已经停止了接收捐赠)……也可能在Crypto的熊市里赚钱这种地狱难度的任务于AI而言也是一种为难。

2、数据贡献和隐私保护

使用Crypto激励更多人为AI算法贡献数据:AI算法对于大量高质量的数据的需求很高,而加密货币可以通过激励机制来鼓励用户共享自己的数据。加密货币可以为数据提供者提供一定的经济回报,从而促进数据的共享和流通。这种激励机制可以鼓励更多的用户贡献数据,进而增加AI算法的训练样本,提高其准确性和智能化水平。使用Crypto保护AI数据贡献者的隐私:区块链的加密和匿名特性也有助于保护用户的隐私。加密货币的数据共享和隐私保护机制为AI算法提供了更多的数据资源,同时确保了用户个人信息的安全。

3、ZKML:确保机器学习模型的隐私性和真实性

ZKML(zero knowledge machine learning)是将零知识证明用于机器学习的技术。ZKML可以解决AI模型/ 输入的隐私保护问题和推理过程可验证的问题,使用zkSNARK来证明机器学习推理的正确性。ZKML可用于针对敏感数据训练和评估机器学习模型,而无需向其他任何人透露数据。

ZKML可用于确保机器学习模型的一致性。这对于用户而言非常重要,因为模型对机器学习的结果至关重要。

目前已经有一些围绕ZKML的应用探索。DeFi方向,fully onchain AI Trading bot-Rockybot已经推出,它可以实现用链上AI模型来预测ETH价格,并且无需中央授权即可自行做出投资决策;Games方向,Modulus Labs推出了一款基于ZKML的国际象棋游戏Leela,所有用户都可以与一个由ZK验证的AI模型提供支持的机器人对弈,此外还有平台格斗游戏AI Arena;Creator Economy方向,社区提交了一个名为zkML AIGC-NFTs#7007的EIP提案(这个EIP尚未通过),提议使用ZKML来验证NFT是否为AI生成,从而将引入AI创造的NFT类别;DID方向,Wordcoin正在探索使用ZKML让用户以无需许可的方式生成IRIS代码,当生成IRIS代码的算法升级后,用户可自行下载模型并生成证明,而无需去Orb站;另外,还有一个建立在StarkNet上的基于信誉的代币分发平台Astraly,正在创建一个基于AI的信誉系统(在不信任地计算信誉评级之前使用聚类模型来识别用户/项目特征、徽章和历史行为)。

4、AI+Blockchain:自我完善的区块链协议

通过透明的AI机器学习,DeFi协议可以无需信任地自我优化,比如使用机器学习来调整稳定币的汇率/利率。通过使用多模式生物识别/身份验证,dApps可以进行自我管理合规性/安全性。甚至ZK Rollup的ZKP生成过程,也许也创建一种专注于为机器学习构建的证明系统,从而构建出世界上最快的zk-AI Prover,从而进一步大幅提高ZK Rollup的性能。当然,在AI和Crypto的融合之路上还有很多的挑战。比如,到目前为止还没有人完成将现有AI操作移植到这些自动生成证明的语言中的工作,虽然Giza正在致力于将预训练的ONNX模型移植到Cario以进行可验证的推理。

总结

AI和Crypto的融合可能会为数字化带来智能变革。AI的应用使得Crypto更加智能化和高效化,而基于Crypto则能为AI算法提供更多更真实、全面的数据和可信的运行环境。尽管面临很多挑战,但我们可以期待AI和Crypto的更多深度融合,共同推动数字经济的发展,为全人类共同创造更好的未来。

免责声明:本文仅代表作者个人观点,不代表链观CHAINLOOK立场,不承担法律责任。文章及观点也不构成投资意见。请用户理性看待市场风险,以及遵守所在国家和地区的相关法律法规。
图文来源:0xCousin,如有侵权请联系删除。转载或引用请注明文章出处!

标签:

分享至
https://www.chainlook.cn/toutiao/1691122447.html

下一篇:

长推:USDC开始支持Arbitrum上的原生资产,这意味着什么?

对arbitrum目前市场地位的确认,两者之间也会产生互相促进。

免责声明:
链观CHAINLOOK作为区块链技术应用与Web3行业研究的智库媒体,旨在为中国区块链专家、学者们提供最新的行业资讯信息与数据样本,用于区块链技术研究与创新。本站所发布的文章仅代表作者的个人观点,不代表链观CHAINLOOK官方立场,本站所发布的区块链行业研究报告与数据分析成果是通过人工智能算法对数据内容进行分析与归纳生成,不代表任何投资暗示与建议,链观CHAINLOOK不承担法律责任。

风险提示:
虚拟货币不具有法定货币等同的法律地位,参与虚拟货币投资交易存在法律风险,链观CHAINLOOK坚决反对各类代币炒作,请读者提高风险意识,理性看待区块链技术应用及市场风险。

© 链观CHAINLOOK All Rights Reserved. 京ICP备18054193号-5