Nansen:加密寒冬结束?——加密估值和基本面数据分析
本文的目标是确定加密货币衍生品市场和传统现货市场的系统模式。这些指标对当前的市场环境发出了什么信号?加密货币投资者如何才能确保他们不会只见树木不见森林?
原文标题:The forest for the trees: Are crypto valuations and fundamentals signaling the end of this crypto winter?
原文作者:Aurelie Barthere
原文来源:nansen
编译:Lynn,MarsBit
关键要点
- 本说明介绍了三个指标,一个是美元的领先宏观指标,另一个是两个加密衍生品指标:一个是均值回复的看涨看跌隐含波动率指数,一个是代表加密货币估值的加密货币风险溢价。
- 这些指标的最新信息是:
- 美国 DXY 的峰值没有得到基本面的验证,这意味着融资条件很可能还不足以让加密货币价格周期性地见底
- 相对于标准普尔 500 指数,加密货币既不显得过分“富”,也不显得过分“便宜”。
- 在美国经济衰退和股票市场抛售的情况下,股票和加密货币的风险溢价可能会一起跳升,这可能会转化为加密货币价格的进一步(和最后的?)下跌。
简介
正在进行的加密货币熊市中,至少可以说是发生了一些令人不安的事件,从商业模式缺陷的揭露到彻底的欺诈性计划的曝光。在本说明中,我们从特定的事件中抽身出来,看一下加密货币的价格行为和宏观指标的发展。
我们的目标是确定加密货币衍生品市场和传统现货市场的系统模式。这些指标对当前的市场环境发出了什么信号?加密货币投资者如何才能确保他们不会只见树木不见森林?
在 A 节中,我们提出了一个美元(USD)的预测模型,因为美元代表了全球融资条件的一个及时指标,并且因为加密货币价格往往从美元的疲软中受益,反之,在美元走强的宏观环境下,加密货币的价格会挣扎。
B 节和 C 节重点关注加密货币衍生品市场,测试 BTC 和 ETH 期权价格对 BTC 和 ETH 现货价格的预测能力。B 节考虑了看涨看跌价差行为,C 节介绍了“加密货币风险溢价”或“CRP”的概念。
A. 增长背离作为美元强势的预测因素
在我们写这篇文章的时候,美元已经开始对主要的 DM 货币下跌,特别是像日元这样的低收益货币,以及在中国的“零利率”退出后对人民币下跌。
近期美元价格疲软的一个驱动因素似乎是未来债券市场对美联储利率峰值的定价。债券期货目前预测,美联储政策利率将在 2023 年 5 月达到峰值 ~4.84%,并将在 2023 年下半年削减 40bps 以上。诚然,美国发布 的CPI 连续两个月意外下行,这可以解释部分加息的定价问题。
然而,降息或所谓的“美联储支点”只能在美国宏观经济严重疲软,实际增长急剧放缓的情况下发生。美联储主席鲍威尔曾多次传达:1)紧缩不足的风险大于过度紧缩的风险;2)劳动力市场过于紧张,需要重新平衡(见图 A.1)。这两个政策原则加强了美国实际增长疲软的必要条件,使美联储验证了债券市场目前的定价。因此,了解美国实际增长动态对评估未来美元价格走势很重要。
Figure A.1. Wage growth and soft Fed targets
我们测试了美国和其他国家之间的相对增长变化,以及它们对各自美元外汇交叉盘价格的预测能力。
为了评估相对增长,我们按国家衡量制造业采购经理人指数(制造业 PMI)的变化。在可能的情况下,我们收集经济学家在 PMI 发布前的共识。如果无法获得共识,我们就求助于闪电调查,这是标普全球在最终发布前发布的 PMI 估计值。如果预测或估计不可用,我们使用最终发布的 PMI.
为什么使用制造业 PMI 作为国家间增长差异转变的代表?
- 及时性:作为调查,PMI 比工业生产等“硬指标”具有领先性
- 统一的方法:各国的 PMI 计算方法是统一的
- 自动相关:在一定时期内,PMI 的下降往往伴随着进一步的下降,反之则是上升。这对价格预测是有帮助的
- 制造业 PMI 而不是服务业 PMI:我们使用制造业 PMI 而不是服务业 PMI,因为它们在不同时期和不同国家的数据可用性都很好
对于每个国家的 PMI,我们将高于 50 的数字衡量为正数,例如 +51 = 1 点,低于 50 的数字为负数,例如 48 = -2. 这遵循 PMI 的方法,低于 50 的数据表示活动收缩,高于 50 的数据表示活动扩张。然后我们衡量跨国差异:例如,如果澳大利亚在 M 月扩大了 1 个点,美国收缩了 2 个点,我们的指标将显示 +1 - (-2) = 3 个点,对澳元兑美元有利。
我们在 PMI 可用性允许的最大时间样本上测试这些指标。这种统计测试的稳健性得到了以下支持:在多个时间段进行测试,对多个国家和货币进行测试,以及没有阈值优化,例如,我们只使用最新的月度 PMI.
下面是一个简单测试的结果摘要:使用 PMI 指标买入/中和某种货币是否会比在同一时期持有该货币带来更好的风险调整(回报率-最大缩减)结果。
我们发现:
- 大多数 PMI 指标,作为投资于超额/中性外汇策略的投入,会带来比简单的买入并持有策略更好的结果(见图 A.2)。PMI 指标对于捕捉两个国家之间的长期增长差异特别有用(见图 A.3 至 A.8)。
- 采取闪电式或经济学家的估计,比使用实际的 PMI 作为输入的表现要好一点。
- 对于美元的近似值,我们发现在预测 DXY 时,使用美元 ISM 的共识与加权的欧元和英镑 PMI 之间的简单差值会产生最佳的历史表现(欧元兑美元和英镑兑美元占 DXY 篮子的 70% 左右,见图 A.3 和 A.4)。
- 当用于预测新兴市场货币时,PMI 指标的表现较差:USDCNY(见图 A.9 和 A.10),但特别是 USDKRW、USDINR 和 USDMXN
Figure A.2. Result summary: Using PMIs for currency investment
Figure A.3. PMI Indicator (Final forecast on GBP and EUR forecast - US ISM forecast) vs DXY
Figure A.4. Strategy Return Index (Final forecast on GBP and EUR forecast - US ISM forecast) vs DXY, index= 1 on April 2005
Figure A.5. PMI Indicator (USD ISM actual final PMI - SEK actual final PMI) vs USDSEK
Figure A.6. Strategy Return Index (USD ISM actual final PMI - SEK actual final PMI) vs USDSEK, index= 1 on June 2005
Figure A.7. PMI Indicator (AUD actual final - USD actual final) vs AUDUSD
Figure A.8. Strategy Return Index (AUD actual final - USD actual final) vs AUDUSD, index= 1 on Dec 2019
Figure A.9. PMI Indicator (USD ISM actual final PMI - CNY NBS actual final PMI) vs USDCNY
Figure A.10. Strategy Return Index (USD ISM actual final PMI - CNY NBS actual final PMI) vs USDCNY, index= 1 on Oct 2005
最后,经过测试的 PMI 指标并没有验证 DXY 的峰值。由此可见,现在呼吁向更宽松的全球金融条件过渡可能还为时过早,因此,加密货币资产见底的基本情况可能还没有出现。
B. 战术性加密货币投资的看涨看跌价差
我们把注意力从宏观指标转向衍生品市场,以评估加密货币期权投资者是否在这个熊市中“投降”了。为了解决这个问题,我们计算了 BTC 和 ETH 的看涨期权与看跌期权的开仓加权隐含波动率或“CPIV”(看涨-看跌隐含波动率)。
关于股票 CPIV 和股票价格之间关系的文献是混合的,一些研究认为,在散户投资者主导的市场中,CPIV 往往是逆向的,例如,CPIV 越高,股票标的的预期收益越低,但在“专业”投资者主导的市场中,CPIV 是引领标的价格的(见 Doran, James and Fodor, Andy and Jiang, Danling, Call-Put Implied Volatility Spreads and Option Returns(2013 年 6 月 21 日)。
对于我们的加密货币 CPIV 研究,我们使用通过 Tardis 和 Nansen-Query 从 Deribit 获取的 BTC 和 ETH 认沽和认购的历史隐含波动率。
为了创建我们的 CPIV 加密货币指标,我们过滤掉空头买入价格,并按到期范围(0-10 天,11-40 天,40-90 天,91 天以上)和行权范围将认购-认沽-敞口利息-权重-ivol 数据分组。
我们决定不寻找固定的均值回归阈值:我们的数据涵盖 2021 年 1 月至 2022 年 11 月,或加密货币牛市和熊市的结束。我们假设衍生品市场在未来的周期中一定会发展,因此测试进入和退出阈值的滚动百分位数来代替。
看一下三个月的追踪 90 分位数的进入门槛(例如,当各自的 CPIV 越过进入门槛时买入 BTC 标的)和三个月的追踪 10 分位数的退出门槛(例如,当各自的 CPIV 越过退出门槛时中和 BTC 标的),我们发现,在测试的 11 个指标(执行范围和到期范围的 CPIV 组合)中,有九个在总回报和最大缩减方面击败了买入并持有策略,其中四个显著超越(见图 B.9 和 B.1-B.6)。
在三个月或六个月的时间里,测试第 90 位(90 分位数)或 95 位的进入门槛,以及相当于第 10 位或第 5 位的退出门槛,对结果没有明显影响,在评估这种方法的稳健性时,这是鼓舞人心的。
然而,该策略对 ETH 期权的效果并不理想:在 11 种变化中,只有一种策略战胜了买入并持有 ETH 现货策略(见图 B.7 和 B.8)。
Figure B.1. BTC options 11-40d expiry, 5% OTM: Call-Put Implied Volatility (CPIV) and 3m-rolling 90th and 10th thresholds
Figure B.2. BTC options 11-40d expiry, 5% OTM: CPIV overlay strategy vs BTC buy-and-hold
Figure B.3. BTC options 41-90d expiry, 40%+OTM: CPIV and 3m-rolling 90th and 10th thresholds
Figure B.4. BTC options 41-90d expiry, 40%+ OTM: CPIV overlay strategy vs BTC buy-and-hold
Figure B.5. BTC options 91d+ expiry, 40%+ OTM: CPIV and 3m-rolling 90th and 10th
Figure B.6. BTC options 91d+ expiry, 40%+ OTM: CPIV overlay strategy vs BTC buy-and-hold
Figure B.7. ETH options 91d+ expiry, 40%+ OTM: CPIV and 3m-rolling 90th and 10th
关于【Nansen:加密寒冬结束?——加密估值和基本面数据分析】的延伸阅读
火币HTX重磅亮相GM Vietnam 2024并举办Web3未来之夜:聚焦加密新趋势 推进全球化战略
火币HTX参加GM Vietnam 2024,与越南本地区块链公司和社区合作,推动技术创新。活动上,火币HTX展示了安全合规的交易所经验,并建议用户谨慎投资和多元化投资。此外,火币HTX还与知名媒体ChainCatcher合作举办了“Web3未来之夜”活动,探讨未来发展机遇。火币HTX表示,越南作为亚洲新兴市场,正逐渐成为Web3行业的焦点,将继续关注和支持越南市场的发展。
Arthur Hayes:全球央行降息提前开启,加密牛市大爆发在即
作者认为美元兑日元汇率是重要指标,提出用新印美元与日本央行交换日元解决方案。但央行可能降息维持日元弱势,导致日元走强。美联储可能在6月会议前降息,但考虑总统大选和通胀,可能不会。英国央行可能在G7会议后降息,推动加密货币走高。建议加密货币投资组合项目尽快推出代币,流动性部署到加密货币。加密货币牛市即将苏醒,央行行长将面临挑战。
Figure B.8. ETH options 91d+ expiry, 40%+OTM: CPIV overlay strategy vs BTC buy-and-hold
Figure B.9. Risk-return statistics overview: CPIV overlay strategy vs BTC buy-and-hold
与链上流量相比,衍生品投资者的行为如何?我们将表现最好的CPIV指标(BTC CPIV,41-90 天到期 40% 价外)与 Nansen Smart Money 稳定币风险偏好指标进行比较(见图 B.10 和 B.11)。
Figure B.10. Nansen Smart Money stablecoin indicator and entry / exit thresholds
Figure B.11. Strategy + Nansen Smart Money stablecoin indicator vs BTC buy-and-hold
我们观察到:
- CPIV 指标比稳定币指标产生更频繁的风险上升/风险下降信号
- 两个指标都标记了 2021 年 11 月开始的多月 BTC 价格下跌
- 稳定币指标早在 2022 年 5 月就回到了风险开启状态,而 CPIV 指标在 2022 年 11 月 20 日仍在闪烁着战术性的“风险关闭”。
C. 加密货币风险溢价或基于衍生品的加密货币估值模型
在本节中,我们概念化并计算了第一个版本的加密货币的风险溢价,即“加密货币风险溢价”或“CRP”. 风险溢价,或投资者为补偿持有“风险资产”所需的超额回报,与投资者认为的这些资产的基本价值有关。
到目前为止,还缺乏令人满意的加密货币估价模型。通过计算 BTC 和 ETH 的风险溢价,我们试图估计投资者对这两种资产的感知价值,例如,投资者对这些资产需要多少溢价补偿。我们研究这个溢价在 2021 年 1 月至 2022 年 11 月的时间样本中是如何演变的,以及它与股票投资者要求的风险溢价之间的关系。
我们再次利用 Tardis 在 Nansen-Query 上转发的 Deribit 历史期权数据,这次考虑的是 BTC、ETH 和 SOL 的日内买入和卖出价格(后者的时间样本要小得多,我们不做统计研究,而是呈现一个简单的可视化)。
我们采用了 Ian Martin 在 2015 年 4 月发表的题为《市场的预期回报是什么?》的论文中提出的方法。该论文提出了对股票风险溢价(ERP)的估计,将其与隐含波动率的衡量标准——SVIX 联系起来。与更基本的计算方法(如股票的收益率或股息率预测)相比,使用隐含波动率的优势在于数据的及时性,以及估计未来收益率或其他输入所需的最小假设量。
根据加密货币期权价格计算 SVIX 估计,得出“加密货币风险溢价”或 CRP,具有相同的优势。此外,如上文所述,迄今为止,事实证明很难为加密货币产生一个强大的“基本估值”模型。
将 SVIX 方法从股票导入到加密货币的注意事项是,隐含地假设一个资产类别的隐含波动率与另一个资产类别的隐含波动率有密切的相似性。加密货币衍生品市场还很年轻,还没有像股票期权市场那样被彻底研究。因此,在分析 CRP 估计值时,保持开放的态度是合适的。我们还将在本说明的后面比较 CRP 和 ERP 的动态。
不过,将股票和加密货币估值模型放在一起的一个论据是,这两种资产价格之间的相关性越来越高,特别是自 2021 年以来(见图 C.1)。人们可以说,股票和加密资产价格一起移动,特别是在风险资产抛售的时期。
Figure C.1. 52-week rolling correlations between BTC & SP500, and ETH & S&P 500
为了计算加密货币的 SVIX,我们使用日内中期权价格作为图 C.2 所示公式的输入。图 C.3 中画出了在某一时间 t 的 SVIX 估计值的直观表示。每个每日 SVIX 估计值对应于曲线下的图形面积,以每日的频率刷新。
Figure C.2. SVIX formula
Figure C.3. SVIX visual representation: Daily estimate of the area under the curve, with the curve representing option mid prices (y axis) by option strike (x axis)
图 C.4 按标的物(BTC、ETH、SOL)绘制了加密货币 CRP 的图表,使用的期权的到期时间变化为 30 天、90 天和 180 天。一些观察结果:
- CRP,无论标的物类型或到期时间,似乎都在一起移动
- 随着时间的推移,SOL CRP > ETH CRP > BTC CRP. 这是有道理的,因为它遵循了在已实现的波动率中观察到的风险层次
- SVIX/CRP 线倾向于在选定的时间点激增,然后在较长的时间内回归到更稳定的水平(见图 C.5 和 C.6)
- 2021 年 1 月和 2021 年 5 月期间出现了两次明显的 CRP 激增(后者与中国宣布打击国内加密货币开采和交易的措施的时间线相吻合)
Figure C.4. SVIX or Crypto Risk Premium (CRP) calculated for BTC, ETH, SOL, using 30d / 90d / 180d-options
Figure C.5. SVIX or CRP for BTC using 30d / 90d / 180d-options
Figure C.6. SVIX or CRP for ETH using 30d / 90d / 180d-options
Figure C.7. SVIX or CRP for 180d BTC options vs underlying BTC/USD spot price inverted
Figure C.8. SVIX or CRP for 180d ETH options vs underlying ETH/USD spot price inverted
图 C.7 和 C.8 说明,当 CRP 较低且跳跃时,基础加密货币价格趋于下降,而当 CRP 较高且下降时,基础加密货币价格趋于上升。
为了测试这一观察结果,我们计算了 CRP 达到高与低的历史百分位数后的加密货币现货表现。2021 年 1 月至 2021 年 11 月,或一半的时间样本,被用来测试各种百分位数阈值的样本内。
当 CRP 越过“高”阈值时,该策略投资于相关资产,这里是 BTC,而当 CRP 越过“低”阈值时,则保持中立。75% 的“高”CRP 百分位数阈值和 25% 的“低”阈值是在样本内选择的,并在样本外产生良好的结果(见图 C.9)。
Figure C.9. In-sample, out-of-sample and full-sample testing of CRP 30d: subsequent performance returns of investing in the underlying asset according to CRP’s percentile
Figure C.10. Full-sample results for other variations of CRP, and subsequent returns per CRP percentile
我们最后回到我们的跨资产观点,问:CRP(加密货币风险溢价)和 ERP(股票风险溢价)在时间上如何比较?
图 C.11、C.12、C.13 和C.14 显示:
- 从 2021 年 1 月开始,标准普尔 500 指数的风险溢价一直在稳步上升
- 相比之下,BTC 和 ETH 各自的 CRP 在 2021 年都是不稳定的,但在 2022 年变得更有区间性,甚至经历了 2022 年 5 月的 UST 崩溃和蔓延
- 因此,CRP 和 ERP 之间的比率并不稳定,相对于标准普尔 500 指数,BTC 在 ~4 到 ~30 之间震荡,ETH 在 ~6 到 ~60 之间震荡,各自的中位数分别接近 ~12 和 ~20(2021 年 1 月至 2022 年 11 月之间)
- 截至 2022 年 11 月 20 日(我们的最后一个数据点),CRP 和 ERP 之间的比率接近时间样本的低点,BTC 与标准普尔 500 的比率是 7,ETH 与标准普尔 500 的比率是 12. 这倾向于表明,投资于加密货币与股票的相对溢价已经下降了
- 放大到更长的时间样本,考虑图 C.15 中 BTC 与标普 500 的已实现波动率的比率,我们观察到这个比率也在 2 到 20 之间摆动,中值为 5,非常接近我们样本中的 CRP/ERP 中值,也接近最新的 CRP/ERP 比率
- BTC 和标准普尔 500 指数之间的已实现波动率在 ~5 左右震荡,中间时期出现了急剧的跳跃,例如 2017 年底到 2021 年 1 月,2020 年 2 月(大流行的抛售),以及 2021 年 5 月到 11 月(最近的熊市开始)
Figure C.11. BTC Crypto Risk Premium vs S&P 500 Equity Risk Premium
Figure C.12. ETH CRP vs S&P 500 ERP
Figure C.13. Ratios (BTC CRP / S&P 500 ERP) and (ETH CRP / S&P 500 ERP)
Figure C.14. Ratios (BTC / S&P 500 realized 52-week rolling volatility) and (ETH / S&P 500 realized 52-week rolling volatility)
总结这个跨资产分析,似乎加密货币风险溢价和股票风险溢价之间的关系在 2021 年不稳定之后,在 2022 年似乎已经“正常化”。这对未来的加密货币价格意味着什么?
如果我们看一下标准普尔 500 指数的 ERP 的长期历史(自 20 世纪 90 年代以来),我们发现 ERP 目前相对较高(高于其历史上的第 75 个百分点,见图 C.15),这意味着股票投资者正在要求一个历史上较高的溢价。然而,标准普尔 500 指数的最新 ERP,我们估计为 8-9%,与之前经济衰退的市场崩溃期间达到的水平相比,相形见绌:ERP 在 2020 年和 2008 年超过了 20%,然后急剧逆转。
Figure C.15. S&P 500 Equity Risk Premium (ERP) based on option pricing
因此,我们推测,在美国经济衰退和美国股票抛售的情况下(鉴于美联储决心将紧缩的融资条件维持更长时间,我们对 2023 年的主要设想),ERP 可能会更高,反之,CRP 或加密货币风险溢价也可能会跳升。因此,在融资条件转向对股票和加密货币资产更有利之前,加密货币价格有可能在本周期内经历进一步(和“最后”?)的下跌。
免责声明:本文仅代表作者个人观点,不代表链观CHAINLOOK立场,不承担法律责任。文章及观点也不构成投资意见。请用户理性看待市场风险,以及遵守所在国家和地区的相关法律法规。
图文来源:MarsBit,如有侵权请联系删除。转载或引用请注明文章出处!